Time‐Dependent Dual‐Frequency Coherence in Multivariate Non‐Stationary Time Series
نویسندگان
چکیده
منابع مشابه
SLEX Analysis of Multivariate Nonstationary Time Series
We develop a procedure for analyzing multivariate nonstationary time series using the SLEX library (smooth localized complex exponentials), which is a collection of bases, each basis consisting of waveforms that are orthogonal and time-localized versions of the Fourier complex exponentials. Under the SLEX framework, we build a family of multivariate models that can explicitly characterize the t...
متن کاملSemiparametric Estimation in Multivariate Nonstationary Time Series Models
A system of multivariate semiparametric nonlinear time series models is studied with possible dependence structures and nonstationarities in the parametric and nonparametric components. The parametric regressors may be endogenous while the nonparametric regressors are assumed to be strictly exogenous. The parametric regressors may be stationary or nonstationary and the nonparametric regressors ...
متن کاملAdaptive Bayesian Power Spectrum Analysis of Multivariate Nonstationary Time Series
This article introduces a nonparametric approach to multivariate time-varying power spectrum analysis. The procedure adaptively partitions a time series into an unknown number of approximately stationary segments, where some spectral components may remain unchanged across segments, allowing components to evolve differently over time. Local spectra within segments are fit through Whittle likelih...
متن کاملModelling Multivariate Time Series
Multivariate time series (MTS) data are widely available in di erent elds including medicine, nance, science and engineering. Modelling MTS data e ectively is important for many decision-making activities. In this paper, we will describe some of our e orts in modelling these data for numerous tasks such as outlier analysis, forecasting and explanation. Through the analysis of various kinds of M...
متن کاملGaussian process for nonstationary time series prediction
In this paper, the problem of time series prediction is studied. A Bayesian procedure based on Gaussian process models using a nonstationary covariance function is proposed. Experiments proved the approach e4ectiveness with an excellent prediction and a good tracking. The conceptual simplicity, and good performance of Gaussian process models should make them very attractive for a wide range of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Time Series Analysis
سال: 2018
ISSN: 0143-9782,1467-9892
DOI: 10.1111/jtsa.12408